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Wilson Cloud formation by low-altitude nuclear explosions 
By R. E. WALTZ 

Visidyne, Inc., Burlington, Massachusetts 01803t 

(Received 23 May 1977) 

A model of Wilson Cloud formation following a low-altitude nuclear detonation is 
developed. It is shown that, for detonation yields between k t  and 100 kt, simple 
scaling laws characterize the evolution and physical properties of the Wilson Cloud. 

1. Introduction 
In  this article we shall deal with the Wilson Cloud formed by low-altitude nuclear 

explosions as described in Glasstone (1962). Despite the fact that this is a well-known 
phenomenon, we have found no detailed treatment of it in the literature. The basis 
of the effect is straightforward. During the weak shock phase of an explosion, the 
pressure behind the shock front becomes less than the ambient atmospheric pressure 
over a certain volume. Thus parcels of air passing through the shock undergo a rapid 
expansion which can temporarily drive the relative humidity to supersaturation. 
Under these conditions, the radii of water-droplet aerosols present can grow by many 
orders of magnitude, thereby momentarily forming a cloud in a region behind the 
advancing shock. We shall restrict the discussion here to maritime aerosols composed 
of salt-solution droplets. 

We shall demonstrate (i) that there is a threshold of ambient relative humidity for 
significant cloud formation independent of the explosion energy and (ii) that over a 
wide range of explosion energies the maximum cloud droplet sizes are nearly inde- 
pendent of the ambient aerosol spectrum and may be scaled with the explosion energy. 

I n  5 2, we discuss the hydrodynamic flow behind the shock wave and its effect on 
the relative humidity which drives the cloud formation. In  $3 ,  we review droplet 
growth kinetics and the basis for droplet size scaling. Finally, we give in $ 4  a universal 
scaled formulation of the droplet size and cloud location together with a discussion of 
the limitations on our approach. 

2. Shock humidity profiles 
We shall concern ourselves here with the time t ,  the history of the relative humidity 

S and the temperature T (OK) of an air parcel passing through the shock wave. The 
parcel will be denoted by its initial altitude x and its radial distance r from the explosion 
centre. S is given by s = [ X / ( X  +€)I P/P,  

where P is the pressure, X is the vapour mixing ratio (grams of water vapour per gram 
of dry air), e is the molecular weight of water vapour relative to that of air (0.621) and 

t Present address: General Atomic Company, Sen Diego, California 92138. 
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FIGURE 1. 
7 

Universal shocked relative humidity multiplying function M 'us. dynamic 
air parcels a t  various dynamic lengths I (curve labels). 

time 7 for 

F(T) is the saturation vapour pressure: 

y ( T )  3 (3.53 x 104dyne cm-2)exp [ - (Le/Rd) (1/T --%&)I, (2.2) 

where L is the heat of vaporization of water (2.42 x 1OlOergg-l) and R, is the dry-air 
gas constant (2-87 x lo6 erg g-1 OK-l). 

A crucial simplifying assumption results from neglecting the water condensation 
A X  compared with X .  Existing dry-air calculations of shock wave profiles for pressure 
and temperature assume that the flow behind the shock wave is adiabatic, i.e. 

T = T,(P/P,)(Y-')/y, = 1.4, (2.3) 

where P, and are the pressure and temperature of the air immediately following the 
passage of the shock front. The deviation in temperature from the adiabatic relation 
(2.3) due to the heat of condensation associated with AX is 

(2.4) 

where C, is the specific heat of air a t  constant pressure (1.01 x 107ergg-10K-1). From 
(2.1) and (2.2) it is easily seen that the neglect of AX results in an error in the relative 
humidity A S  f AS' = 17-45 A T I T  + A X / X .  As a result of our numerical computations 
we findaposteriori that A X  is at  worst 0.5 x and hence A T  2: 0.1 "K in the densest 
part of the cloud for an explosion energy of the order of 10 kt (we assume through- 
out a typical maritime aerosol number density of 100 Since X is typically 10-2 
we find that AX/S is of the order of 1 %. This is small compared with the large change 
in 8, say 30-40 yo, in the densest part of the cloud. This justifies the use of existing 
dry-air shock flow results. In  Q 4, we discuss the breakdown of this approximation for 
larger explosion energies. We note in passing that in the region of cloud formation 
the heating of the air due to the absorption of radiation from the fireball at  the centre 

AT = - (L/C,) A X ,  
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FIGURE 2. Relative humidity threshold for cloud formation S&), w8. M*(Z) = [St,,(Z)]-l and the 
pulse duration A7(1) for M > 1.0 ws. dynamic length 1. 

of the explosion (see Glasstone 1962, p. 49) is much less than the AT calculated 
here. 

Thus decoupling shock flow from cloud formation allows us to proceed as follows. 
Using AX << X we have upon direct substitution of (2.2) into (2.1) and use of the ideal- 

(2.5) 
gas law 

S(r,  2, t )  = SO(4 (PIP,) [HT,)/F(T)I = SO(4 M(r ,  t ) ,  

where M = (P/P,)exp 17.45 - -- [ (:*ON2 91. 
Po, To, po and So are respectively the ambient pressure, temperature, density and 
relative humidity of the parcel in question. M depends on PIP, and p/po. These ratios 
ere functions of 1 = r/ro and 7 = t / t ,  only. Here ro and to are the dynamic length and 
dynamic time of the explosion (Sedov 1959, pp. 238-251): 

where E is the hydrodynamic energy of the explosion. (For example, at  sea level 
under standard conditions ro 2: 0.8 km and to N 2.8 s for E = 10 kt.) Figure 1 gives 
the universal function M(7,  1 )  vs. 7 for various 1 values (To = 288.15 OK is used). 
These curves are based on the numerical treatments of shock profiles due to Needham 
et al. (1973). Their work is in apparent ctgreemest with that reported in Bethe et al. 
(1949) and Sedov (1959). We refer the reader unfamiliar with the theory of shock 
waves from explosions to the thorough treatment in the latter reference. 

As we shall see below, significant cloud formation, i.e. large droplet growth, results 
only when the relative humidity in a parcel at 1 is driven to supersaturation S > 1.0. 
Thus, from (2.5) there is an energy-independent threshold Sth(Z) of the ambient 
humidity for cloud formation a t  each 1 given by M*(Z)-l = {max [M(7,Z)]}-l. Figure 
2 plots Sth(Z) vs. 1 [AT(Z) is defined after (4.2)]. We find from figere 1 that, regardless of 
So, cloud formation can begin only after a time 7 2: 0.35 and outside a radius 1 21 0.6. 
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We emphasize here that cloud formation first begins during a period when neither 
strong shock (self-similar) theory nor weak shock (asymptotic) theory is valid. From 
r - 0.03 to r - 1, a numerical treatment of the shock hydrodynamics is required. 
We note in passing that in the region of cloud formation spatial motion of the parcel 
due to shock winds is generally small and of no interest to the problem. A striking 
feature apparent from figure 2 is that if the ambient humidity is nowhere greater 
than 70% then no Wilson Cloud of significance can form. 

3. Droplet growth kinetics 

constituent of maritime aerosols, is 
From Mason (1971), the equation of growth for a salt-solution droplet, the principal 

F(dF/dt) = [S(t )  -Seq(7, m ) ] / Y ( T ) ,  

where S is the shock-driven reIative humidity in the air parcel containing the droplet 
as discussed above, Seq(F, m) is the equilibrium relative humidity for a droplet with 
radius i; and salt mass m, and Y ( T )  is a weakly temperature-dependent coefficient 
determined by the heat and water-vapour diffusion rates in air. In  cgs units 

( 3 . 2 )  

(3 .3)  

Seq(i;, m) = exp (2m/pLRdTF) - 3imM/4rpL WF3, 

Y ( T )  = (LPL/KT)  [L€/(RdT) - 11 + P L R ~ T / [ D G ~ ( T ) ] ,  
Y(300 "K) = 7.26 x lo5 s/cm2, 

where the quantities not given previously are defined as 

p L  = density of liquid water = 1 g ~ m - ~ ,  

u = surface tension of water = 72 dyne cm-1, 

K = thermal conductivity of air = 2-5 x lo3 erg cm-1 s-l, 

D = water-vapour diffusivity in air = 2 x 10-1 cm2 s-l, 

M = molecular weight of water = 18, 

W = molecular weight of salt = 58. 

i = Van Hoff's constant = 2.7, 

It is assumed in deriving ( 3 . 1 )  that water vapour and heat are transported through 
steady profiles around the droplet. This is justified since, as a result of our numerical 
calculations, we find a posteriori that the characteristic transport time rD = r s / D  is 
at worst only 0.1 yo of the characteristic growth and evaporation time regardless of 
the explosion energy. Here rD is the radius containing the water vapour required to 
form a droplet of radius F, i.e. ( F D  =pL/Xp,)%F2 2: 2000P,  and D is the diffusivity. 

We now give a numerical illustration of the droplet growth and evaporation cycle. 
Using the function M shown in figure 1 to find S(T) ,  we have numerically integrated the 
growth (3 .1 )  for five typical droplet species of salt mass mi and relative number density 
mi (see Mason 1971, p. 60) contained in a typical shocked air parcel. For this case 
S, = 0.89, E 1: 14 kt and r 2: 0.9 km, or I 1: 1 .  As will be apparent below, I - 1 
corresponds to the region of maximum droplet growth. In  figure 3, the relative 
humidity 8 seen by the droplets is plotted versus their radii from their entrance into 
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FIQURE 3. Droplet growth and evaporation curves in the relative humidity (S), droplet radius 
(P) plane. ---, Seq(P, m) ; 0, time-step fiducials. Salt mass (g) : m, = 0.488 x lo-", m, = 0.1 17 x 10l6, 
ma = 0 . 3 5 4 ~  lO-l4, m, = 0 . 1 0 5 ~  10-13, m5 = 0 . 3 4 ~  10-12. Relative number: n, = 0.051, 
n, = 0.210, n3 = 0.443, n4 = 0.277, n5 = 0.018. 

the shock until their evaporation behind the advancing clouds. The Seq(r, mi) curves 
are also shown. Upon entering the shock wave a droplet quickly evaporates after a 
sudden drop in S, then its nucleus returns to its equilibrium curve. It remains there 
until S is driven beyond supersaturation, a t  which point rapid droplet growth begins. 
Each species tagged by its initial mass is found to grow to nearly the same maximum 
radius. This feature, which we shall call universal growth, is particularly striking in 
Wilson Cloud growth in that the droplet size at  maximum growth is independent of 
the ambient aerosol spectrum. 

Universal growth may be understood by noting that, for each droplet species, once 
S rises above unity, where significant growth results, Ses(F, m )  for the resulting F is 
very nearly equal to unity and may be replaced by unity in (3.1). This allows the 
growth equation to be rewritten in terms of scaled variables and the universal function 
M(7,  I )  driving the relative humidity. We have then, independent of the species, i.e. 
independent of ?n, 

d [ W 2 ( 7 ,  l)l/d7 N [S&) M(T,I)  - 11, (3.4) 

where ?;'(t, r ,  m) = P ( 7 , I )  to Y-1. (3.5) 
Y is gearly constant over the course of growth and evaporation and we use Y(300) 
as given above. At a given I ,  cloud formation begins and maximum growth is obtained 
at the times for which M(T,  I )  = S;'. We denote these times as 7f(i)  and T ~ ( Z ) ,  respec- 
tively. They may be easily read from figure 1.  Since droplets typically attain radii 
significantly larger than their ambient radii, a suitable initial condition for (3.4) is 

A2[T:(l),I] 2: 0, (3.6) 
independent of the species. No new length scale is introduced thereby and the solution 
to (3.4) and (3.6) is t*herefore universal. 
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FIGURE 1 for 

To clarify the meaning of universal scaled droplet growth C(3.4)-(3.6)] note that 
this implies the following: if at a distance r and time t from an explosion of energy E 
the droplet radius in the Wilson Cloud is a, then for an explosion energy E', a' = r (E' /E) i  
at r' = r(E'/E)* and t' = t(E'/E)f assuming that the same ambient humidity prevails. 
Furthermore, the approximate cloud droplet size can be calculated entirely without 
regard to the ambient aerosol spectrum. 

4. Results of scaling and universal droplet growth 
We present here scaled formulae for maximum droplet size as well as location 

contours of cloud formation and evaporation. For each I value, i.e. each distance 
from the explosion centre, we may approximate that portion of the function M greater 
than unity as a parabola: 

M(7, l )  21 [M*(Z)-l](l-y2)+1, (4.1) 

( 4 4  

where A7(l) = - 71(1) and 71 and 72 are the times a t  which M passes through unity. 
Integrating the scaled droplet growth (3.4), subject to the universal initial condition 

(3.6), over the time interval when So M 2 1.0 (i.e. between 7; 2 71 and 7; < 7 2 ) ,  we 
find using (4.1) that 

where M*(l )  is the maximum of M for the given 1 (see figure 2) and 

Y = [(7-773) + !&I/W, 

AT(Z) is plotted in figure 2 along with &(l) while Rkax(Z) is plotted in figure 4 for 
various ambient humidities. 
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FIG~RE 5. Contours of cloud formation time T:, time of maximum growth 7: and evaporation 
time 7: us. dynamic length I for various ambient relative humidities. --, 7:; ---, 7:; 

-*-, 7:. 

By using the exact M functions to integrate (3.4) beyond 7;(1) to evaporation, where 
R2 returns to zero, we obtain the evaporation time 7$(1). Figure 5 gives contours of 
the times of cloud formation 7f(Z), maximum growth 7:(1) and evaporation 7$(1) 

for various ambient relative humidities ranging from 70 to 100 %. Note that, as the 
relative humidity approaches loo%, the cloud once formed at  a given location I 
requires an increasingly longer time to evaporate. (This results from the fact that, 
according to (3. l ) ,  the rate of evaporation is proportional to S,, - X, which is roughly 
I -8, over much of the evaporation phase.) The contours may be read at  constant 7 

to find the location of the outside and inside of the cloud, as well as the I value of 
maximum growth. Figure 4 and equation (3.5) may then be used to find the maximum 
droplet radius. 

The scaling laws may be used to find the limits of validity for the approach taken 
here. We have noted in $ 2  that, for E of the order of 10 kt, and with water conden- 
sation neglected, AX resuIts in errors in X of the order of 1%. Since droplet radii 
scale as Eh, AX scales as E*. Thus for E of the order of I00 kt, the error in S would 
be of order 3 %, which is unacceptably large compared with a typical supersaturation 
in the densest part of the cloud. Thus, for accurate results larger energies require a 
treatment which couples cloud formation to shock hydrodynamics, the simple scaling 
laws presented here being inadequate. Also, we remind the reader that AX is direotly 
proportional to the number density of an aerosol. If it is larger than the 100 cm-3 
assumed here, then the upper limit of validity must be rescaled downwards. 
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The universal droplet growth equations will also show breakdown for very low 
explosion energies such that the length scale introduced by the ambient droplet sizes 
becomes important. This is the case if the typical values of R;,&l) given by (4.2) or 
figure 4 are not considerably larger than R,2 = T,2ti1Y, where To(=)  is the equilibrium 
radius of a representative droplet species a t  100 yo relative humidity. Let us consider 
a, median salt grain such as (3) in figure 3, which has To = 4.5 x cm. For E = 10 kt, 
this corresponds to Ri N 0.5 x This is well above the typical values of R;,, 
which, in turn, are conservatively of the order of 0.01. However, since Ri scales like 
E-3, we expect our treatment to break down for E less than about kt. 

The author wishes to thank Dr 0. P. Manley and Dr R. C. Englade of Visidyne, Inc., 
for many useful discussions on the topic of Wilson Cloud formation. This research 
was sponsored by the Defense Nuclear Agency under Subtask S99QAX H1004, Work 
Unit 1 1, entitled OPTIR Code and Aircraft Measurements. 
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